Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae.

نویسندگان

  • Christopher K Yost
  • Amber M Rath
  • Tanya C Noel
  • Michael F Hynes
چکیده

A genetic locus encoding erythritol uptake and catabolism genes was identified in Rhizobium leguminosarum bv. viciae, and shown to be plasmid encoded in a wide range of R. leguminosarum strains. A Tn5-B22 mutant (19B-3) unable to grow on erythritol was isolated from a mutant library of R. leguminosarum strain VF39SM. The mutated gene eryF was cloned and partially sequenced, and determined to have a high homology to permease genes of ABC transporters. A cosmid complementing the mutation (pCos42) was identified and was shown to carry all the genes necessary to restore the ability to grow on erythritol to a VF39SM strain cured of pRleVF39f. In the genomic DNA sequence of strain 3841, the gene linked to the mutation in 19B-3 is flanked by a cluster of genes with high homology to the known erythritol catabolic genes from Brucella spp. Through mutagenesis studies, three distinct operons on pCos42 that are required for growth on erythritol were identified: an ABC-transporter operon (eryEFG), a catabolic operon (eryABCD) and an operon (deoR-tpiA2-rpiB) that encodes a gene with significant homology to triosephosphate isomerase (tpiA2). These genes all share high sequence identity to genes in the erythritol catabolism region of Brucella spp., and clustalw alignments suggest that horizontal transfer of the erythritol locus may have occurred between R. leguminosarum and Brucella. Transcription of the eryABCD operon is repressed by EryD and is induced by the presence of erythritol. Mutant 19B-3 was impaired in its ability to compete against wild-type for nodulation of pea plants but was still capable of forming nitrogen-fixing nodules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation of a pseudomonad-like hydrocarbon degradative ferredoxin oxygenase complex involved in rhizopine catabolism in Sinorhizobium meliloti and Rhizobium leguminosarum bv. viciae.

In Sinorhizobium meliloti the mocCABR genes have previously been shown to be required for rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolism. We show that the mocDE(F) gene cluster is also needed. MocDE(F), which is involved in the catabolism of 3-O-MSI to its demethylated form scyllo-inosamine (SI) has homology to components that would comprise a ferredoxin-oxygenase system. The mocCA...

متن کامل

A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra.

Flavonoids in root exudate of leguminous plants activate the transcription of Rhizobium genes involved in the formation of root nodules (nod genes). We report that inoculation with the homologous symbiont R. leguminosarum bv. viciae results in an increased nod gene-inducing activity (Ini) in root exudate of V. sativa subsp. nigra, whereas inoculation with heterologous Rhizobium strains results ...

متن کامل

Draft genome of the strain RCAM1026 Rhizobium leguminosarum bv. viciae

Rhizobium leguminosarum bv. viciae RCAM1026 is a strain first isolated in 1964 from nodules of "Ramensky 77" cultivar of garden pea (Pisum sativum L.) now routinely used as a model strain in inoculation experiments on pea. Assembly with SPAdes yielded 133 contigs longer then 200 bp (N50 = 202,321, GC% = 60.84). Resulting annotated genome is 7,248,686 bp encoding 6792 genes.

متن کامل

The Rhizobium Ieguminosarum biovar viciae nod0 gene can enable a nod€ mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch

Sciences, University of East Anglia, Norwich NR4 7TJ, UK 2 School of Biological Analysis of the nodulation characteristics of transposon-induced mutants of Rhizobium leguminosarum bv. viciae revealed that nodO and the closely-linked rhi genes contribute t o nodulation of peas (Pisum sativum) and the vetch Vicia hirsuta. Although mutation of nodO alone had no significant effect on nodulation of ...

متن کامل

Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR.

A mildly acid-sensitive mutant of Rhizobium leguminosarum bv. viciae WSM710 (WR6-35) produced colonies which were more mucoid in phenotype than the wild-type. Strain WR6-35 contained a single copy of Tn5 and the observed mucoid phenotype, acid sensitivity and Tn5-induced kanamycin resistance were 100% co-transducible using phage RL38. WR6-35 produced threefold more exopolysaccharide (EPS) than ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 152 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2006